Evaluación de la capacidad de Auxenochlorella sp. (Trebouxiophyceae, Chlorophyta) para la remoción de cobre en soluciones sintéticas

Autores/as

  • Walter Antecao Centro de Desarrollo Biotecnología Industrial y Bioproductos Domolif SpA
  • Johanna Obreque Centro de Desarrollo Biotecnología Industrial y Bioproductos Domolif SpA
  • Roberto Ramos Universidad de Antofagasta https://orcid.org/0009-0008-9696-7238

DOI:

https://doi.org/10.22370/rbmo.2024.59.3.4914

Palabras clave:

Removal, copper, chlorophyte, microalgae, Auxenochlorella sp.

Resumen

A study was designed with the purpose of preliminarily evaluating heavy metal removal capacity of the green microalga Auxenochlorella sp., exposing it to different concentrations of copper in synthetic solutions. The study was carried out in the laboratory of Aguamarina Spa Company. Auxenochlorella sp. microalgae. were kept under cryopreservation at -80 °C until the date of the experiment. Then they were thawed and reactivated to be maintained in the culture medium described by the supplying laboratory. The microalgae were transferred from the cryogenizer tube to a test tube and then to Erlenmeyer flasks where they were maintained under controlled conditions of temperature (19 °C), aeration and a photoperiod of 24:0 h of light. Three concentrations of copper were used in the experiment; 1.0, 3.0 and 5.0 mg L-1, respectively, each in triplicate and two additional controls, C1 contained only the microalgae without culture medium and C2 contained the microalgae with culture medium, with an initial concentration in all treatments of 3.87·106 cells mL-1. Finally, the results obtained allow us to conclude that the microalga Auxenochlorella sp. exposed to copper at different concentrations was able to remove up to 15.32% of copper. The concentrations of the metal were not sufficient to cause growth inhibition or mortality, however, the copper removal rates were not close to what was expected for this taxonomic family of microalgae. According to the results, this problem must continue to be addressed, in order to find optimal environmental and nutritional factors that improve the efficiency of copper removal by the microalga Auxenochlorella sp.

Biografía del autor/a

Roberto Ramos, Universidad de Antofagasta

Autor corresponsal: roberto.ramos@uantof.cl

Citas

Ajjabi L & L Chouba. 2009. Biosorption of Cu2+ and Zn2+ from aqueous solutions by dried marine green macroalga Chaetomorpha linum. Journal of Environmental Management 90: 3485-3489.

Beltrán-Pineda M & A Gómez-Rodríguez. 2016. Biorremediación de metales pesados cadmio (Cd), cromo (Cr) y mercurio (Hg) mecanismos bioquímicos e ingeniería genética: una revisión. Revista Facultad de Ciencias Básicas 12(2): 172-197.

Bolan N, A Kunhikrishna, R Thangarajan, J Kumpiene, J Park, T Makino & K Scheckel. 2014. Remediation of heavy metal(loid)s contaminated soils - To mobilize or to immobilize. Journal of Hazardous Material 266: 141-166.

Cacciuttolo C & D Cano. 2022. Environmental impact assessment of mine tailings spill considering metallurgical processes of gold and copper mining: Case studies in the Andean Countries of Chile and Peru. Water 14, 3057.

Day J & J Brand. 2005. Cryopreservation methods for maintaining microalgal cultures. In: Andersen RA (ed). Algal culturing techniques, pp. 165-187. Elsevier Academy Press, Oxford.

Fadel M, NM Hassanein, MM Elshafei, AH Mostafa, MA Ahmed & HM Khater. 2017. Biosorption of manganese from groundwater by biomass of Saccharomyces cerevisiae. HBRC Journal 13(1): 106-113.

Finocchio E, A Lodi, C Solisio & A Converti. 2010. Chromium (VI) removal bymethylated biomass of Spirulina platensis: the effect of methylation process. Chemical Engineering Journal 156(2): 264-269.

Gadd G. 2010. Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156(3): 609-643.

Gokhale S, K Jyoti & S Lele. 2008. Kinetic and equilibrium modeling of chromium (VI) biosorption on fresh and spent Spirulina platensis/Chlorella vulgaris biomass. Bioresource Technology 9(99): 3600-3608.

González P. 2021. Habitar entre arenas de relaves. Incertidumbre sanitaria y sufrimiento ambiental en Chañaral (Chile). Revista INVI 36(101): 83-108. <https://doi.org/10.4067/S0718-83582021000100083>

Govarthanan M, R Mythili, T Selvankumar, S Kamala-Kannan, A Rajasekar & Y-C Chang. 2016. Bioremediation of heavy metals using an endophytic bacterium Paenibacillus sp. RM isolated from the roots of Tridax procumbens. Biotech 6(2), 242.

Jacob J, M Karthik, R Saratale, G Kumar, D Prabakar, K Kadirvelu & A Pugazhendhi. 2018. Biological approaches to tackle heavy metal pollution: A survey of literature. Journal of Environmental Management 217: 56-70.

Karthik C, M Oves, R Thangabalu, R Sharma, SB Santhosh & PI Arulselvi. 2016. Cellulosimicrobium funkei-like enhances the growth of Phaseolus vulgaris by modulating oxidative damage under Chromium(VI) toxicity. Journal of Advanced Research 7(6): 839-850.

Oves M, MS Khan, AH Qari, MN Felemban & T Almeelbi. 2016. Heavy metals: biological importance and detoxification strategies. Journal of Bioremediation and Biodegradation 7(2): 1-15.

Park J & S Choi. 2002. Metal recovery using immobilized cell suspension from a brewery. Korean Journal of Chemical Engineering 19(1): 68-74.

Rodríguez L & D Rivera. 1995. Efecto del cobre y el cadmio en el crecimiento de Tetraselmis suecica (KYLIN) BUTCHER y Dunaliella salina TEODORESCO. Estudios Oceanológicos 14: 61-74.

Romera E, F González, A Ballester, M Blázquez & J Muñoz. 2007. Comparative study of biosorption of heavy metals using different types of algae. Bioresource Technology 98(17): 3344-3353.

Simon F, J Girón, J Rivera, A Vega, G Arce, M Molinos-Senante, H Jorquera, G Flamant, W Bustamante, M Greene, I Vargas, F Suarez, P Pastén & S Cortés. 2023. Toward sustainability and resilience in Chilean cities: Lessons and recommendations for air, water, and soil issues. Heliyon 9(7): 21.

Terry P & W Stone. 2002. Biosorption of cadmium and copper contaminated water by Scenedesmus abundans. Chemosphere 47(3): 249-255.

Veenstra J, D Sanders & S Ahn. 1999. Impact of chromium and copper on fixed film biologycal system. Journal of Environmental Engineering 125(6): 522-531.

Villena J. 2018. Calidad del agua y desarrollo sostenible. Revista Peruana de Medicina Experimental y Salud Pública 35(2): 304-308.

Wu G, H Kang, X Zhang, H Shao, L Chu & R Chengjiang. 2010. A critical review on the bio-removal of hazardous heavy metal from contaminated soil: Issues, progress, eco-environmental concerns and opportunities. Journal of Hazardous Materials 174(1-3): 1-8.

Yang J, J Cao, G Xing & H Yuan. 2014. Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima UTEX2341. Bioresource Technology 175: 537-544.

Zhou G, F Peng, L Zhang & G Ying. 2012. Biosorption of zinc and copper from aqueous solutions by two freshwater green microalgae Chlorella pyrenoidosa and Scenedesmus obliquus. Environmental Science and Pollution Research 19(7): 2918-2929.

Descargas

Publicado

2024-12-01

Cómo citar

Antecao, W., Obreque, J., & Ramos, R. (2024). Evaluación de la capacidad de Auxenochlorella sp. (Trebouxiophyceae, Chlorophyta) para la remoción de cobre en soluciones sintéticas. Revista De Biología Marina Y Oceanografía, 59(3), 228–233. https://doi.org/10.22370/rbmo.2024.59.3.4914

Número

Sección

Nota Científica